układ równań ma nieskończenie wiele rozwiązań jeśli
Układ równań 4x + 2y = 10 6x + ay = 15 (oczywiscie to sie bierze w klamrę) ma nieskończenie wiele rozwiązań, jeśli a) a= −1 b) a= 0
Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne rozwiązywania układów równań prowadzą do dokładnego rozwiązania, jeżeli wszystkie obliczenia wykonywane są bez zaokrągleń.
Układ równań liniowych (2.3) ma rozwiązanie wtedy i tylko wtedy, gdy rzędy macierzy A i B są równe, a więc. R(A) = R(B) = r, przy tym, jeżeli r = n (n – liczba niewiadomych), to układ ma dokładnie jedno rozwiązanie, natomiast jeżeli r < n, to układ ma nieskończenie wiele rozwiązań i są one zależne od n − r parametrów.
Mamy układ równań: Zapisujemy układ w postaci macierzowej: oraz w postaci rozszerzonej: Sprawdzamy, że: Liczba niewiadomych . a zatem układ ma rozwiązanie. Ponieważ . to układ ten ma nieskończenie wiele rozwiązań. Rozwiązanie będzie zależne od. parametrów. Rozwiązanie tradycyjne. Przekształcamy równanie drugie aby otrzymać x 1.
W zależności od liczby rozwiązań równania pierwszego stopnia z jedną niewiadomą wyróżnia się następujące typu równań: równanie oznaczone – równanie mające dokładnie jedno rozwiązanie, np.: równanie tożsamościowe – równanie mające nieskończenie wiele rozwiązań, np.:
nonton alice in borderland season 2 episode 1. Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura maj 2011 zadanie 4 Układ równań {4x+2y=106x+ay=15 ma nieskończenie wiele rozwiązań, jeśli:Układ równań {4x+2y=106x+ay=15 ma nieskończenie wiele rozwiązań, jeśli:Chcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura maj 2011 zadanie 5 Rozwiązanie równania x(x+3)−49=x(x−4) należy do przedziału:Następny wpis Matura maj 2011 zadanie 3 Wyrażenie 5a2−10ab+15a jest równe iloczynowi:
Odpowiedzi Cahier odpowiedział(a) o 19:02 0 = 0 to równanie mające nieskończenie wiele rozwiązań, a np. 0 = 5 to równanie nie mające rozwiązania, lub źle obliczone ;) 7 0 Uważasz, że znasz lepszą odpowiedź? lub
fever Użytkownik Posty: 13 Rejestracja: 1 kwie 2010, o 22:44 Płeć: Kobieta Lokalizacja: pk równanie ma nieskończenie wiele rozwiązań Równanie \(\displaystyle{ a^{2}x - 7 = 49x + a}\) ma nieskończenie wiele rozwiązań gdy: a = 7 a = -7 a = 0 a = 49 ? Przy moich wymysłach równanie przyjęło postać \(\displaystyle{ a ^{2} - a = 56}\) Nie wiem czy dobrze, ale nawet jesli, to utknęłam:/ rodzyn7773 Użytkownik Posty: 1659 Rejestracja: 12 lip 2009, o 10:44 Płeć: Mężczyzna Lokalizacja: Skierniewice/Rawa Maz. Podziękował: 8 razy Pomógł: 278 razy równanie ma nieskończenie wiele rozwiązań Post autor: rodzyn7773 » 3 kwie 2010, o 20:40 Aby to równanie było tożsamościowe to lewa strona musi być równa prawej. Porównaj odpowiednie współczynniki po lewej i prawej stronie równania. fever Użytkownik Posty: 13 Rejestracja: 1 kwie 2010, o 22:44 Płeć: Kobieta Lokalizacja: pk równanie ma nieskończenie wiele rozwiązań Post autor: fever » 3 kwie 2010, o 20:51 Wg tego co wywnioskowałam a musiało by być równe 8. kombinuje dalej . rodzyn7773 Użytkownik Posty: 1659 Rejestracja: 12 lip 2009, o 10:44 Płeć: Mężczyzna Lokalizacja: Skierniewice/Rawa Maz. Podziękował: 8 razy Pomógł: 278 razy równanie ma nieskończenie wiele rozwiązań Post autor: rodzyn7773 » 3 kwie 2010, o 22:16 Porównuje współczynniki: \(\displaystyle{ \begin{cases} a^2=49 \\ a=-7 \end{cases}}\) Ostateczne rozwiązanie to a=-7.
Szczegóły Odsłony: 4309 Rozwiązywanie układów równań pierwszego stopnia z dwiema niewiadomymi metodą przeciwnych współczynników. Przykład 1 Rozwiąż metodą przeciwnych współczynników układ równań: a) Musimy doprowadzić równania do takiej postaci, aby współczynniki przy niewiadomej x lub y były liczbami przeciwnymi np.: . Zauważamy, że najłatwiej przeciwne współczynniki można uzyskać przy niewiadomej y, wystarczy dowolne równanie pomnożyć przez . Uzyskaliśmy przeciwne współczynniki przy niewiadomej y, w pierwszym równaniu współczynnik ten wynosi , w drugim . Po uzyskaniu przeciwnych współczynników, równania układu dodajemy stronami: Otrzymane równanie, czyli dołączamy do dowolnego równania układu i otrzymujemy układ równań równoważny danemu: Po wyznaczeniu x wstawiamy otrzymane wyrażenie, czyli do pierwszego równania w miejsce niewiadomej x. Układ jest oznaczony, ma jedno rozwiązanie, którym jest para liczb . b) Musimy doprowadzić równania do takiej postaci, aby współczynniki przy niewiadomej x lub y były liczbami przeciwnymi np.: . Zauważamy, że najłatwiej przeciwne współczynniki można uzyskać przy niewiadomej y, pierwsze równanie pomnożymy przez , drugie pomnożymy przez . Uzyskaliśmy przeciwne współczynniki przy niewiadomej y, w pierwszym równaniu współczynnik ten wynosi , w drugim . Po uzyskaniu przeciwnych współczynników równania układu dodajemy stronami: Otrzymane równanie, czyli dołączamy do dowolnego równania układu i otrzymujemy układ równań równoważny danemu: Wyznaczamy niewiadomą y w drugim równaniu: Układ jest nieoznaczony, ma nieskończenie wiele rozwiązań. c) Porządkujemy układ równań: Musimy doprowadzić równania do takiej postaci, aby współczynniki przy niewiadomej x lub y były liczbami przeciwnymi np.: . Zauważamy, że najłatwiej przeciwne współczynniki można uzyskać przy niewiadomej x, wystarczy drugie równanie pomnożyć przez . Uzyskaliśmy przeciwne współczynniki przy niewiadomej x, w pierwszym równaniu współczynnik ten wynosi , w drugim . Po uzyskaniu przeciwnych współczynników równania układu dodajemy stronami: Otrzymane równanie, czyli dołączamy do dowolnego równania układu i otrzymujemy układ równań równoważny danemu: Otrzymaliśmy sprzeczność. Układ równań jest sprzeczny, brak rozwiązań. Obejrzyj rozwiązanie: Rozwiązywanie układów równań metodą przeciwnych współczynników - definicje, przykłady
Zadanie blockedSprawdz, czy równanie ma nieskończenie wiele rozwiązań, czy nie ma rozwiązań. Równania niemające rozwiązań podkreśl Sprawdz, czy równanie ma nieskończenie wiele rozwiązań, czy nie ma rozwiązań. Równania niemające rozwiązań podkreśl a)3x-1=2x+(x-4) b)-x+2+(x+5)=4x-4(x+3) c)7-5(x+2)+3(x+3)=-2x+6 d)5(2x-3)-7x+15=3(x-8)+24 e)4x-22=14-(3x+2)-7(5-x) szkolnaZadaniaMatematyka Odpowiedzi (1) maalinkowa a)3x-1=2x+(x-4)3x-1=2x+x-40=-3b)-x+2+(x+5)=4x-4(x+3) -x+2+x+5=4x-4x-120=19c)7-5(x+2)+3(x+3)=-2x+6 7-5x-10+3x+9=-2x+60=0d)5(2x-3)-7x+15=3(x-8)+24 10x-15-7x+15=3x-24+240=0e)4x-22=14-(3x+2)-7(5-x)4x-22=14-3x-2-35+7x0=-1;) :) :) o 19:44
układ równań ma nieskończenie wiele rozwiązań jeśli